25 research outputs found

    Exploring geolocation issues in social media analytics A case study with Tweet messages

    Get PDF
    Social media data, such as Tweet messages, are sometimes associated with their geolocation. This information can be exploited to perform spatial analyses, resulting in geosocial analytics. However, the geolocation does not often correspond to the actual position of the author, but could be fictiously associated to the messages. The issues coming from the absence of Tweet geolocation metadata are explored in this paper, through a test case over Italy

    USE OF ASSISTED PHOTOGRAMMETRY FOR INDOOR AND OUTDOOR NAVIGATION PURPOSES

    Get PDF
    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users’ location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error

    Vision-Based Georeferencing of GPR in Urban Areas

    Get PDF
    Ground Penetrating Radar (GPR) surveying is widely used to gather accurate knowledge about the geometry and position of underground utilities. The sensor arrays need to be coupled to an accurate positioning system, like a geodetic-grade Global Navigation Satellite System (GNSS) device. However, in urban areas this approach is not always feasible because GNSS accuracy can be substantially degraded due to the presence of buildings, trees, tunnels, etc. In this work, a photogrammetric (vision-based) method for GPR georeferencing is presented. The method can be summarized in three main steps: tie point extraction from the images acquired during the survey, computation of approximate camera extrinsic parameters and finally a refinement of the parameter estimation using a rigorous implementation of the collinearity equations. A test under operational conditions is described, where accuracy of a few centimeters has been achieved. The results demonstrate that the solution was robust enough for recovering vehicle trajectories even in critical situations, such as poorly textured framed surfaces, short baselines, and low intersection angles

    Kinect Fusion improvement using depth camera calibration

    Get PDF
    Scene's 3D modelling, gesture recognition and motion tracking are fields in rapid and continuous development which have caused growing demand on interactivity in video-game and e-entertainment market. Starting from the idea of creating a sensor that allows users to play without having to hold any remote controller, the Microsoft Kinect device was created. The Kinect has always attract researchers in different fields, from robotics to Computer Vision (CV) and biomedical engineering as well as third-party communities that have released several Software Development Kit (SDK) versions for Kinect in order to use it not only as a game device but as measurement system. Microsoft Kinect Fusion control libraries (firstly released in March 2013) allow using the device as a 3D scanning and produce meshed polygonal of a static scene just moving the Kinect around. A drawback of this sensor is the geometric quality of the delivered data and the low repeatability. For this reason the authors carried out some investigation in order to evaluate the accuracy and repeatability of the depth measured delivered by the Kinect. The paper will present a throughout calibration analysis of the Kinect imaging sensor, with the aim of establishing the accuracy and precision of the delivered information: a straightforward calibration of the depth sensor in presented and then the 3D data are correct accordingly. Integrating the depth correction algorithm and correcting the IR camera interior and exterior orientation parameters, the Fusion Libraries are corrected and a new reconstruction software is created to produce more accurate models

    Uav Photogrammetry: Block Triangulation Comparisons

    Get PDF
    UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord"), useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey), allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes) were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma), Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points

    Measuring the snowpack depth with Unmanned Aerial System photogrammetry: comparison with manual probing and a 3D laser scanning over a sample plot

    Get PDF
    Photogrammetric surveys using Unmanned Aerial Systems (UAS) may represent an alternative to existing methods for measuring the distribution of snow, but additional efforts are still needed to establish this technique as a low-cost, yet precise tool. Importantly, existing works have mainly used sparse evaluation datasets that limit the insight into UAS performance at high spatial resolutions. Here, we compare a UAS-based photogrammetric map of snow depth with data acquired with a MultiStation and with manual probing over a sample plot. The relatively high density of manual data (135\u2009pt over 6700\u2009m2, i.e., 2\u2009pt/100\u2009m2) enables to assess the performance of UAS in capturing the marked spatial variability of snow. The use of a MultiStation, which exploits a scanning principle, also enables to compare UAS data on snow with a frequently used instrument in high-resolution applications. Results show that the Root Mean Square Error (RMSE) between UAS and MultiStation data on snow is equal to 0.036\u2009m when comparing the two point clouds. A large fraction of this difference may be, however, due to spurious differences between datasets due to simultaneous snowmelt, as the RMSE on bare soil is equal to 0.02\u2009m. When comparing UAS data with manual probing, the RMSE is equal to 0.31\u2009m, whereas the median difference is equal to 0.12\u2009m. The statistics significantly decrease up to RMSE\u2009=\u20090.17\u2009m when excluding areas of likely water accumulation in snow and ice layers. These results suggest that UAS represent a competitive choice among existing techniques for high-precision, high-resolution remote sensing of snow

    Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation

    Get PDF
    Performing two independent surveys in 2016 and 2017 over a flat sample plot (6700 m2), we compare snow-depth measurements from Unmanned-Aerial-System (UAS) photogrammetry and from a new high-resolution laser-scanning device (MultiStation) with manual probing, the standard technique used by operational services around the world. While previous comparisons already used laser scanners, we tested for the first time aMultiStation, which has a different measurement principle and is thus capable of millimetric accuracy. Both remote-sensing techniques measured point clouds with centimetric resolution, while we manually collected a relatively dense amount of manual data (135 pt in 2016 and 115 pt in 2017). UAS photogrammetry and the MultiStation showed repeatable, centimetric agreement in measuring the spatial distribution of seasonal, dense snowpack under optimal illumination and topographic conditions (maximum RMSE of 0.036 m between point clouds on snow). A large fraction of this difference could be due to simultaneous snowmelt, as the RMSE between UAS photogrammetry and the MultiStation on bare soil is equal to 0.02 m. The RMSE between UAS data and manual probing is in the order of 0.20-0.30 m, but decreases to 0.06-0.17 m when areas of potential outliers like vegetation or river beds are excluded. Compact and portable remote-sensing devices like UASs or aMultiStation can thus be successfully deployed during operational manual snow courses to capture spatial snapshots of snow-depth distribution with a repeatable, vertical centimetric accuracy

    Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart

    Get PDF
    Rationale:Cardiac ECM (extracellular matrix) comprises a dynamic molecular network providing structural support to heart tissue function. Understanding the impact of ECM remodeling on cardiac cells during heart failure (HF) is essential to prevent adverse ventricular remodeling and restore organ functionality in affected patients.Objectives:We aimed to (1) identify consistent modifications to cardiac ECM structure and mechanics that contribute to HF and (2) determine the underlying molecular mechanisms.Methods and Results:We first performed decellularization of human and murine ECM (decellularized ECM) and then analyzed the pathological changes occurring in decellularized ECM during HF by atomic force microscopy, 2-photon microscopy, high-resolution 3-dimensional image analysis, and computational fluid dynamics simulation. We then performed molecular and functional assays in patient-derived cardiac fibroblasts based on YAP (yes-associated protein)-transcriptional enhanced associate domain (TEAD) mechanosensing activity and collagen contraction assays. The analysis of HF decellularized ECM resulting from ischemic or dilated cardiomyopathy, as well as from mouse infarcted tissue, identified a common pattern of modifications in their 3-dimensional topography. As compared with healthy heart, HF ECM exhibited aligned, flat, and compact fiber bundles, with reduced elasticity and organizational complexity. At the molecular level, RNA sequencing of HF cardiac fibroblasts highlighted the overrepresentation of dysregulated genes involved in ECM organization, or being connected to TGF beta 1 (transforming growth factor beta 1), interleukin-1, TNF-alpha, and BDNF signaling pathways. Functional tests performed on HF cardiac fibroblasts pointed at mechanosensor YAP as a key player in ECM remodeling in the diseased heart via transcriptional activation of focal adhesion assembly. Finally, in vitro experiments clarified pathological cardiac ECM prevents cell homing, thus providing further hints to identify a possible window of action for cell therapy in cardiac diseases.Conclusions:Our multiparametric approach has highlighted repercussions of ECM remodeling on cell homing, cardiac fibroblast activation, and focal adhesion protein expression via hyperactivated YAP signaling during HF

    µ-Calpain Conversion of Antiapoptotic Bfl-1 (BCL2A1) into a Prodeath Factor Reveals Two Distinct alpha-Helices Inducing Mitochondria-Mediated Apoptosis

    Get PDF
    Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease µ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance
    corecore